If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10(n^2-1)+2n-5=(2n+5)(n-1)
We move all terms to the left:
10(n^2-1)+2n-5-((2n+5)(n-1))=0
We add all the numbers together, and all the variables
2n+10(n^2-1)-((2n+5)(n-1))-5=0
We multiply parentheses
10n^2+2n-((2n+5)(n-1))-10-5=0
We multiply parentheses ..
10n^2-((+2n^2-2n+5n-5))+2n-10-5=0
We calculate terms in parentheses: -((+2n^2-2n+5n-5)), so:We add all the numbers together, and all the variables
(+2n^2-2n+5n-5)
We get rid of parentheses
2n^2-2n+5n-5
We add all the numbers together, and all the variables
2n^2+3n-5
Back to the equation:
-(2n^2+3n-5)
10n^2+2n-(2n^2+3n-5)-15=0
We get rid of parentheses
10n^2-2n^2+2n-3n+5-15=0
We add all the numbers together, and all the variables
8n^2-1n-10=0
a = 8; b = -1; c = -10;
Δ = b2-4ac
Δ = -12-4·8·(-10)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{321}}{2*8}=\frac{1-\sqrt{321}}{16} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{321}}{2*8}=\frac{1+\sqrt{321}}{16} $
| 2m^2+6=-5 | | (43)(212)=(43)(34)(h) | | 5n^2-4=-28 | | 3(x-6)-8x=-2+5(2x±1) | | 5z-3=6z-3 | | 6x^2-27=15x | | 2x/3+x/4=11/12 | | 3(5u+6)=13u+10 | | 5(w-5)=3w-11 | | 30x=102x | | F(6)=3(x)^2+4x+5 | | 8x+8=6x^2 | | 6n-1=-5 | | 2(x+2)^2-5=93 | | -8x+2(x-8)=-34 | | x=2=2(x-20) | | 3x+4(x+1)=53 | | a=2*(a-20)= | | x/5-0.5=0.8 | | 8^b^-1=2^4^b^+^4 | | 10-1/6r=18 | | 1/3(9x+12)=-2x+-1 | | 3x-15÷2=4× | | R=(2000+500n)(50-5n) | | 12=3-4n | | 3222-7=x | | 5(2/7)+k=2(27/70) | | 12=x+1.25x | | -83x+416=0 | | 0.450.15=y−0.45 | | 9/11=n+9/7 | | 1261/4y=127 |